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Although â-lactones undergo a number of unique and
stereospecific reactions,1 they have had limited use as
intermediates in the context of natural product total syn-
thesis.2 This may in part be due to the lack of direct and
general methods for their synthesis in optically pure form.3
As part of a program aimed at the utilization of â-lactones
as intermediates in natural product synthesis, we now report
the application of a â-lactone-based strategy to the first total
syntheses of (8S,21S,22S,23R)-okinonellin B (1) and
(8R,21S,22S,23R)-okinonellin B (2). Isolated by Fusetani
and co-workers,4 the cytotoxin okinonellin B is a member of
a family of marine furanosesterterpenes that display a
variety of biological activities, including antibacterial, cy-
totoxic, and antispasmodic activity.5 The reduced butenolide
of okinonellin B makes it unique from other sesterterpenoids
in this class of marine natural products. Fusetani described
the relative stereochemistry of the butyrolactone, but the
relative stereochemistry between the butyrolactone and the
C8 stereocenter in addition to the absolute stereochemistry
were not determined. The present synthesis demonstrates
the utility of â-lactones as intermediates in the synthesis of
natural products and, specifically, in the concise synthesis
of all-syn-trisubstituted butyrolactones.
It was envisioned that a tandem Mukaiyama aldol-

lactonization (TMAL) reaction (6 f 5)6 and a tandem
transacylation-debenzylation of a benzyloxy-substituted
â-lactone (5 f 4)7 would deliver the butyrolactone 4 in a
highly stereocontrolled manner (Figure 1). A Negishi cou-
pling of the (R)- and (S)-vinyl iodide 3 and the butyrolactone
fragment 4 would then complete the synthesis in a concise
fashion.8 Both enantiomers of vinyl iodide 3 would be
synthesized and coupled in order to assign the relative
configuration at C8 as well as the absolute configuration of
the natural product.
The synthesis of the enantiomeric vinyl iodides 3 began

with two sequential alkylations of 1,3-dithiane using the

readily available iodides (S)- and (R)-89 and 3-(bromometh-
yl)furan (10)10 to give the dialkylated dithianes 11 (Scheme
1). A two-stage reduction involving Raney nickel and
dissolving metal reduction with calcium cleaved the dithiane
and benzyl ether and provided the alcohols 12. Swern
oxidation11 followed by Takai reaction12 provided the re-
quired vinyl iodides 3 for Negishi coupling to the butyro-
lactone 4.

The synthesis of the butyrolactone 4 began by conversion
of the known lactone 1313 to the Weinreb amide followed by
silylation to give amide 14 (Scheme 2). A carefully controlled
addition14 of the Grignard reagent derived from bromide 1515
to amide 14 gave the desired ketone 16 in 87% yield. Tebbe
methylenation,16 simultaneous desilylation of the silyl ether
and silylacetylene, and Swern oxidation delivered the alde-
hyde 6 required for the TMAL reaction. In the event,
treatment of aldehyde 6 with ZnCl2 and the ketene acetal
19 at ambient temperature for 14 h gave the â-lactone 5 as
a single diastereomer17 in 73% yield18 and with <4%
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Figure 1. Retrosynthesis of okinonellin B showing the two-step
â-lactone-based strategy for the synthesis of butyrolactone 4 from
aldehyde 6.
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epimerization.19 The stereochemical outcome is consistent
with a chelation-controlled initial aldol reaction as deter-
mined by conversion to the all-syn-butyrolactone 4.20 The
tandem transacylation-debenzylation of â-lactone 5 to the
all-syn-butyrolactone was effected using BCl3, which gave
improved results over the originally reported FeCl3 (29%).7a
Thus, in two steps aldehyde 6 is transformed into the highly
functionalized, all-syn-butyrolactone 4 in a highly stereo-
controlled fashion.
For the fragment coupling to provide okinonellin B, we

relied on the single-pot procedure of Negishi involving alkyne
carboalumination followed by transmetalation to Zn(II) and
a Pd(0)-mediated coupling to a vinyl halide.8 In the event,
carboalumination of alkyne 4 using the water-accelerated

conditions developed by Wipf21 followed by addition of ZnCl2,
the Pd(0)/Ph3As catalyst system reported by Farina,22 and
vinyl iodides (S)-3 or (R)-3 gave (8S)-okinonellin B (1) and
(8R)-okinonellin B (2), respectively (Scheme 2). Significant
amounts (∼40%) of quenched vinylmetallic species derived
from 4 and methylated products derived from vinyl iodides
3 account in part for the low yields obtained in this
carboalumination/coupling sequence.23

Not unexpectedly, the diastereomers of okinonellin B (1
and 2) did not exhibit any differences by either 1H or 13C
NMR. A significant difference in the CD spectrum of the
two diastereomers was observed. However, neither a CD
spectrum of the natural product nor the natural product
itself was available for comparison.24 At this time, we can
only speculate based on the optical rotation data25 that
natural okinonellin B possesses the 8R,21R,22R,23S stere-
ochemistry that is enantiomeric to our synthetic
(8S,21S,22S,23R)-okinonellin B (1).
In conclusion, the described total syntheses of

(8S,21S,22S,23R)- and (8R,21S,22S,23R)-okinonellin B dem-
onstrate the utility of â-lactones in natural product synthesis
and specifically their use for the synthesis of highly substi-
tuted and functionalized butyrolactones. A two-step proce-
dure efficiently and stereoselectively converted the chiral
aldehyde 6 to the all-syn-butyrolactone 4. The sequence
employed a tandem Mukaiyama aldol-lactonization and a
tandem debenzylation-transacylation reaction as key steps.
We are currently exploring further novel transformations
of â-lactones and their application to natural product
synthesis.
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Scheme 1a

a Key: (a) -45 f -20 °C, 57 h; (b) THF, -78 f -45 °C, 10 h, then
10, THF, 15 h; (c) EtOH, 40 °C, 3 h; (d) -33 °C, 1.5 h; (e) DMSO,
(COCl)2, CH2Cl2, -78 °C, Et3N, -78 f 0 °C, 25 min; (f) THF, 0 °C, 4
h.

Scheme 2a

a Key: (a) C6H6, 0 °C, 1.5 h; (b) DMF, 24 °C, 2.5 h; (c) reflux then
added to 14, Et2O, -78 f 0 °C, 39 h; (d) -40 °C, 3 h; (e) THF, 0 f 24
°C, 3 h; (f) DMSO, (COCl)2, CH2Cl2, -78 °C, Et3N, -78 °C, 1 h; (g)
CH2Cl2, 25 °C, 14 h; (h) CH2Cl2, -78 °C, 15 min; (i) CH2Cl2, -23 °C,
2 h; (j) (1:4, Pd (8 mol %):ligand), NMP, 25 °C, 7.5 h.
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